

Hind Photostat & Book Store

Best Quality Classroom Topper Hand Written Notes to Crack GATE, IES, PSU's & Other Government Competitive/ Entrance Exams

MADE EASY

ELECTRONICS ENGINEERING Digital Electronics By-DHANANJAY Sir

- Theory
- Explanation
- Derivation
- Example
- Shortcuts
- Previous Years Question With Solution

Visit us:-www.hindphotostat.com

Courier Facility All Over India (DTDC & INDIA POST) **Mob-9311989030**

MEMORY Input output DIGITAL -Va ۲ ē. ADC DAC SYSTEM Vo UP -> ALU -> Adder fsub LOGIC GATES -> BJT DSP -> control unit -> Decoder or Mux OR ۲ MC -> Registers f MOSFET Counters --- FLIP FLOPS OR ۲ DIDDES ۲ 1 FPGA -> Field Programmable Gale Array. The place ۲ where we use the VIII) PARITY GENERATORS/CHECKERS ۲ device II) sequential circuits :. SYLLABUS !. ۲ IV) Stale Machines i) Flip Flops. I) Basics ۲ L'Mealy ii) Registers. L, MOOre ⇒Boolean Algebra. Newly Added in iii) Counters. -> Logic Gates. GATE IV) ADC'S & DAC'S . KMAP L> Number systems; Codes V) LOGIC FAMILLES !. and Data Representation. . VI) T TL i) RTL BIT Based ۲ vii) ECL ii) DCTL < Not included II) combinational circults :. ۲ in GATE. iii) IIL i) Anithmetic circuits ۲ IV) DTL V) HTL . ⊣ HA, FA, HS, FS , Parallel Adder ۲ i) NMOS FET Based. > Look Ahead Carry Adder (Mainly GATE). ii) pmos ۲ iii) CMOS_ BCD Adder. vi) Basics of Semi Conductor Memories. ۲ L, 2's complement Adder CKt ۲ ЖЖ i) RAM, ii) MULTIPLEXER (Every Gale & IES ii) ROM. paper), ۲ 前) DEMUX 11) PAL, PLA iv) DE COPER IV) PROM. V) ENCODER ۲ vi) COMPARATOR ۲ VII) CODE CONVERTOR

۲ * Preperation Strategy:. i) class Notes. ii) Practising Previous Papers. $\rightarrow ECE \ 1 EES$. -> ECE -> EE GATE -) IN L, CSE iii) <u>Reference</u> Books: L>M. Mano L> Roth. ۲ Laub + schilling (ADC+ DAC, logic tamilies). (A) ۲ ۲

* BOOLEAN ALGEBRA . * Introduced in 1859 by GEORGE BOOLE. * No xtor we available that time, hence designed with help of 0 i) VENIN DIAGRAM ii) SWITCHES - OFF (LOGIC 0) SON (LOGIC 1) * Boolean Algebra only handles "o and 1". A (VARIABLES -) Boolean B VARIABLES -] Algebra ۲ *Jo minimize logical expressions following methods are used i) Bookean Algebra (1,2,3 vallables max^m) ۲ (i) KMap (2,3,4,5 variables at maxm) iii) Ouine Mcicluskey or JABULATION METHOD (Any no. of variables *Boolean Algebra is used when OIP is either "O or I" ۲ KMap is used when ofp is either "o, I or x" 19 *THEOREMS IN BOOLEAN ALGEBRA ... LOGIC CKT OUTPUT. INPUT ۲ ¥ Nolè :. i) NOT :. $A \longrightarrow \overline{A} = Y$ 4NOT operation $\tilde{A} = A \cdot$ Relation ۲ ۲ ii) AND . ۲ $A \rightarrow A + B = Y$ IT OR! 0

AND OPERATION OR OPERATION !.	5
0.0 = 0	
$0 \cdot 1 = 0$ $0 + 1 = 1$	۲
$1 \cdot 0 = 0$ 1 + 1 = 1 1 + 1 = 1	
1.1 = 0	
A + O = A	۲
DROPERATION ALL - A	۲
$A \cdot 0 = 0$ \leftarrow AND-OPERATION THEOREM $A + 1 = 1$ A - 1 = A THEOREM $A + 1 = 1$	
$\begin{vmatrix} A - I &= I \\ A - \overline{A} = O \end{vmatrix} = \begin{vmatrix} A + \overline{A} &= I \end{vmatrix}$	
	0
-) unimize logic expression!.	۲
QI) Minimize logic expression!.	۲
Y= AB+AB	
Soln: Y=AB+AB	0
$Y = A(B + \overline{B})$	
Y = A	
02) Jo Somplement Logical exp; Y=AB+ABC+ABC; min ^m no. of	
02) Jo Somplement Logical exp; 1=115111	
2 Input NAND yans	
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
Solm: Y= AB+ABC+ABC = SOP FORM	Ő
$= AB + A\bar{B} ((+\bar{c}))$	
= AB + AB	
= A (B+B)	
Y = A - NO Gates Required	0
Q3) Minimize logic expression; >= (A+B)(A+c)	0
(83) Minimize logic expression, 1	
$Sol^{m'}$. $Y = (A+B)(A+c) \leftarrow POS FORM.$	
$Y = A \cdot A + A \cdot C + A \cdot B + B \cdot C$	
Y = A + AC + AB + BC	
$Y \ge A(1+c+B) + ABC$	
Y=A+BC SOP FORM	9
	and the second

Analycis:

$$(A+B) \cdot (A+c) \rightarrow \exists v_{A}uables.$$

$$(A+B) \cdot (A+c) \rightarrow \exists v_{A}uables.$$

$$(A+B) (A+c) = A + B C$$

$$(A+B) (A+c) = A + B C$$

$$(A+B) (A+c) = (X+y) (X+y) (X+y).$$

$$(A+B) (A+c) = (X+y) (X+y) = X$$

$$(X+y) = X (X+y) = X (X+y) = X = 0.$$

$$(A+B) (A+c) = (X+y+z) (X+y+z) = X = 0.$$

$$(A+B) (X+y+z) (X+y+z) = X = 0.$$

$$(A+B) (X+y+z) = (X+y+z) = X = 0.$$

$$(A+B) (X+y+z) = (X+y+z) = (X+y+z) = X = 0.$$

$$(A+B) (X+y+z) = (X+y+$$

-

. •

.

Sig) Minimize;
$$y = AB + \overline{A}C + BC$$

Soln'. $Y = AB + \overline{A}C + BC$
Nole: $3 \text{ variable Available}$
 1 Repeated Juile
 $1 \text{ Repeated Science}$
 $1 \text{ Repeated$

.